Copied to
clipboard

G = S3xD4xC32order 432 = 24·33

Direct product of C32, S3 and D4

direct product, metabelian, supersoluble, monomial

Aliases: S3xD4xC32, C12:C62, D6:2C62, C62:28D6, Dic3:1C62, C12:5(S3xC6), (S3xC12):5C6, D12:3(C3xC6), (C3xD12):8C6, (C3xC12):21D6, (C2xC6):2C62, C33:32(C2xD4), (S3xC62):8C2, C62:11(C2xC6), (D4xC33):4C2, (D4xC32):9C6, C32:14(C6xD4), C6.5(C2xC62), C2.6(S3xC62), (C3xC62):7C22, (C32xD12):14C2, (C32xC12):7C22, (C32xC6).79C23, (C32xDic3):22C22, C4:1(S3xC3xC6), C3:2(D4xC3xC6), (S3xC2xC6):7C6, (S3xC3xC12):9C2, (C2xC6):9(S3xC6), C6.77(S3xC2xC6), C22:3(S3xC3xC6), (S3xC6):8(C2xC6), (C4xS3):1(C3xC6), (C3xC12):7(C2xC6), (C3xD4):2(C3xC6), (C3xC3:D4):5C6, C3:D4:1(C3xC6), (S3xC3xC6):22C22, (C22xS3):3(C3xC6), (C3xDic3):8(C2xC6), (C32xC3:D4):9C2, (C3xC6).53(C22xC6), (C3xC6).198(C22xS3), SmallGroup(432,704)

Series: Derived Chief Lower central Upper central

C1C6 — S3xD4xC32
C1C3C6C3xC6C32xC6S3xC3xC6S3xC62 — S3xD4xC32
C3C6 — S3xD4xC32
C1C3xC6D4xC32

Generators and relations for S3xD4xC32
 G = < a,b,c,d,e,f | a3=b3=c3=d2=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 880 in 388 conjugacy classes, 150 normal (26 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, C22, S3, S3, C6, C6, C6, C2xC4, D4, D4, C23, C32, C32, C32, Dic3, C12, C12, C12, D6, D6, D6, C2xC6, C2xC6, C2xD4, C3xS3, C3xS3, C3xC6, C3xC6, C3xC6, C4xS3, D12, C3:D4, C2xC12, C3xD4, C3xD4, C3xD4, C22xS3, C22xC6, C33, C3xDic3, C3xC12, C3xC12, C3xC12, S3xC6, S3xC6, C62, C62, S3xD4, C6xD4, S3xC32, S3xC32, C32xC6, C32xC6, S3xC12, C3xD12, C3xC3:D4, C6xC12, D4xC32, D4xC32, D4xC32, S3xC2xC6, C2xC62, C32xDic3, C32xC12, S3xC3xC6, S3xC3xC6, S3xC3xC6, C3xC62, C3xS3xD4, D4xC3xC6, S3xC3xC12, C32xD12, C32xC3:D4, D4xC33, S3xC62, S3xD4xC32
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, C32, D6, C2xC6, C2xD4, C3xS3, C3xC6, C3xD4, C22xS3, C22xC6, S3xC6, C62, S3xD4, C6xD4, S3xC32, D4xC32, S3xC2xC6, C2xC62, S3xC3xC6, C3xS3xD4, D4xC3xC6, S3xC62, S3xD4xC32

Smallest permutation representation of S3xD4xC32
On 72 points
Generators in S72
(1 59 7)(2 60 8)(3 57 5)(4 58 6)(9 30 27)(10 31 28)(11 32 25)(12 29 26)(13 39 34)(14 40 35)(15 37 36)(16 38 33)(17 72 54)(18 69 55)(19 70 56)(20 71 53)(21 46 41)(22 47 42)(23 48 43)(24 45 44)(49 67 63)(50 68 64)(51 65 61)(52 66 62)
(1 29 14)(2 30 15)(3 31 16)(4 32 13)(5 10 33)(6 11 34)(7 12 35)(8 9 36)(17 22 67)(18 23 68)(19 24 65)(20 21 66)(25 39 58)(26 40 59)(27 37 60)(28 38 57)(41 52 53)(42 49 54)(43 50 55)(44 51 56)(45 61 70)(46 62 71)(47 63 72)(48 64 69)
(1 29 14)(2 30 15)(3 31 16)(4 32 13)(5 10 33)(6 11 34)(7 12 35)(8 9 36)(17 67 22)(18 68 23)(19 65 24)(20 66 21)(25 39 58)(26 40 59)(27 37 60)(28 38 57)(41 53 52)(42 54 49)(43 55 50)(44 56 51)(45 70 61)(46 71 62)(47 72 63)(48 69 64)
(1 41)(2 42)(3 43)(4 44)(5 48)(6 45)(7 46)(8 47)(9 63)(10 64)(11 61)(12 62)(13 56)(14 53)(15 54)(16 55)(17 37)(18 38)(19 39)(20 40)(21 59)(22 60)(23 57)(24 58)(25 65)(26 66)(27 67)(28 68)(29 52)(30 49)(31 50)(32 51)(33 69)(34 70)(35 71)(36 72)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 4)(2 3)(5 8)(6 7)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 24)(22 23)(25 26)(27 28)(29 32)(30 31)(33 36)(34 35)(37 38)(39 40)(41 44)(42 43)(45 46)(47 48)(49 50)(51 52)(53 56)(54 55)(57 60)(58 59)(61 62)(63 64)(65 66)(67 68)(69 72)(70 71)

G:=sub<Sym(72)| (1,59,7)(2,60,8)(3,57,5)(4,58,6)(9,30,27)(10,31,28)(11,32,25)(12,29,26)(13,39,34)(14,40,35)(15,37,36)(16,38,33)(17,72,54)(18,69,55)(19,70,56)(20,71,53)(21,46,41)(22,47,42)(23,48,43)(24,45,44)(49,67,63)(50,68,64)(51,65,61)(52,66,62), (1,29,14)(2,30,15)(3,31,16)(4,32,13)(5,10,33)(6,11,34)(7,12,35)(8,9,36)(17,22,67)(18,23,68)(19,24,65)(20,21,66)(25,39,58)(26,40,59)(27,37,60)(28,38,57)(41,52,53)(42,49,54)(43,50,55)(44,51,56)(45,61,70)(46,62,71)(47,63,72)(48,64,69), (1,29,14)(2,30,15)(3,31,16)(4,32,13)(5,10,33)(6,11,34)(7,12,35)(8,9,36)(17,67,22)(18,68,23)(19,65,24)(20,66,21)(25,39,58)(26,40,59)(27,37,60)(28,38,57)(41,53,52)(42,54,49)(43,55,50)(44,56,51)(45,70,61)(46,71,62)(47,72,63)(48,69,64), (1,41)(2,42)(3,43)(4,44)(5,48)(6,45)(7,46)(8,47)(9,63)(10,64)(11,61)(12,62)(13,56)(14,53)(15,54)(16,55)(17,37)(18,38)(19,39)(20,40)(21,59)(22,60)(23,57)(24,58)(25,65)(26,66)(27,67)(28,68)(29,52)(30,49)(31,50)(32,51)(33,69)(34,70)(35,71)(36,72), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,24)(22,23)(25,26)(27,28)(29,32)(30,31)(33,36)(34,35)(37,38)(39,40)(41,44)(42,43)(45,46)(47,48)(49,50)(51,52)(53,56)(54,55)(57,60)(58,59)(61,62)(63,64)(65,66)(67,68)(69,72)(70,71)>;

G:=Group( (1,59,7)(2,60,8)(3,57,5)(4,58,6)(9,30,27)(10,31,28)(11,32,25)(12,29,26)(13,39,34)(14,40,35)(15,37,36)(16,38,33)(17,72,54)(18,69,55)(19,70,56)(20,71,53)(21,46,41)(22,47,42)(23,48,43)(24,45,44)(49,67,63)(50,68,64)(51,65,61)(52,66,62), (1,29,14)(2,30,15)(3,31,16)(4,32,13)(5,10,33)(6,11,34)(7,12,35)(8,9,36)(17,22,67)(18,23,68)(19,24,65)(20,21,66)(25,39,58)(26,40,59)(27,37,60)(28,38,57)(41,52,53)(42,49,54)(43,50,55)(44,51,56)(45,61,70)(46,62,71)(47,63,72)(48,64,69), (1,29,14)(2,30,15)(3,31,16)(4,32,13)(5,10,33)(6,11,34)(7,12,35)(8,9,36)(17,67,22)(18,68,23)(19,65,24)(20,66,21)(25,39,58)(26,40,59)(27,37,60)(28,38,57)(41,53,52)(42,54,49)(43,55,50)(44,56,51)(45,70,61)(46,71,62)(47,72,63)(48,69,64), (1,41)(2,42)(3,43)(4,44)(5,48)(6,45)(7,46)(8,47)(9,63)(10,64)(11,61)(12,62)(13,56)(14,53)(15,54)(16,55)(17,37)(18,38)(19,39)(20,40)(21,59)(22,60)(23,57)(24,58)(25,65)(26,66)(27,67)(28,68)(29,52)(30,49)(31,50)(32,51)(33,69)(34,70)(35,71)(36,72), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,24)(22,23)(25,26)(27,28)(29,32)(30,31)(33,36)(34,35)(37,38)(39,40)(41,44)(42,43)(45,46)(47,48)(49,50)(51,52)(53,56)(54,55)(57,60)(58,59)(61,62)(63,64)(65,66)(67,68)(69,72)(70,71) );

G=PermutationGroup([[(1,59,7),(2,60,8),(3,57,5),(4,58,6),(9,30,27),(10,31,28),(11,32,25),(12,29,26),(13,39,34),(14,40,35),(15,37,36),(16,38,33),(17,72,54),(18,69,55),(19,70,56),(20,71,53),(21,46,41),(22,47,42),(23,48,43),(24,45,44),(49,67,63),(50,68,64),(51,65,61),(52,66,62)], [(1,29,14),(2,30,15),(3,31,16),(4,32,13),(5,10,33),(6,11,34),(7,12,35),(8,9,36),(17,22,67),(18,23,68),(19,24,65),(20,21,66),(25,39,58),(26,40,59),(27,37,60),(28,38,57),(41,52,53),(42,49,54),(43,50,55),(44,51,56),(45,61,70),(46,62,71),(47,63,72),(48,64,69)], [(1,29,14),(2,30,15),(3,31,16),(4,32,13),(5,10,33),(6,11,34),(7,12,35),(8,9,36),(17,67,22),(18,68,23),(19,65,24),(20,66,21),(25,39,58),(26,40,59),(27,37,60),(28,38,57),(41,53,52),(42,54,49),(43,55,50),(44,56,51),(45,70,61),(46,71,62),(47,72,63),(48,69,64)], [(1,41),(2,42),(3,43),(4,44),(5,48),(6,45),(7,46),(8,47),(9,63),(10,64),(11,61),(12,62),(13,56),(14,53),(15,54),(16,55),(17,37),(18,38),(19,39),(20,40),(21,59),(22,60),(23,57),(24,58),(25,65),(26,66),(27,67),(28,68),(29,52),(30,49),(31,50),(32,51),(33,69),(34,70),(35,71),(36,72)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,4),(2,3),(5,8),(6,7),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,24),(22,23),(25,26),(27,28),(29,32),(30,31),(33,36),(34,35),(37,38),(39,40),(41,44),(42,43),(45,46),(47,48),(49,50),(51,52),(53,56),(54,55),(57,60),(58,59),(61,62),(63,64),(65,66),(67,68),(69,72),(70,71)]])

135 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3H3I···3Q4A4B6A···6H6I···6AG6AH···6AW6AX···6BO6BP···6CE12A···12H12I···12Q12R···12Y
order122222223···33···3446···66···66···66···66···612···1212···1212···12
size112233661···12···2261···12···23···34···46···62···24···46···6

135 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D6D6C3xS3C3xD4S3xC6S3xC6S3xD4C3xS3xD4
kernelS3xD4xC32S3xC3xC12C32xD12C32xC3:D4D4xC33S3xC62C3xS3xD4S3xC12C3xD12C3xC3:D4D4xC32S3xC2xC6D4xC32S3xC32C3xC12C62C3xD4C3xS3C12C2xC6C32C3
# reps11121288816816121281681618

Matrix representation of S3xD4xC32 in GL6(F13)

300000
030000
009000
000900
000010
000001
,
900000
090000
009000
000900
000010
000001
,
900000
030000
009400
000300
000010
000001
,
010000
100000
0012000
008100
0000120
0000012
,
100000
010000
0012000
0001200
0000111
0000112
,
100000
010000
0012000
0001200
0000111
0000012

G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,4,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,8,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,11,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,11,12] >;

S3xD4xC32 in GAP, Magma, Sage, TeX

S_3\times D_4\times C_3^2
% in TeX

G:=Group("S3xD4xC3^2");
// GroupNames label

G:=SmallGroup(432,704);
// by ID

G=gap.SmallGroup(432,704);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-3,807,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<